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SIMILAR SOLUI'IONS OF THE BOUNDARY LAYER 

EQUATIONS FOR PURELY VISCOUS 

NON-NEWTONIAN FLUIDS 

By C. S inc la i r  Wells, Jr. 

The boundary layer equations f o r  flows of purely viscous non-Newtonian 
f lu ids  are investigated fo r  the purpose of obtaining a l l  possible conditions 
for  which s i m i l a r  solutions ex is t .  Both steady and unsteady flows are  in- 
vestigated. The momentum transport  model i s  the Ostwald-de Waele (power law) 
formulation which predicts  shear-thinning, shear-thickening, and the special  
case of Newtonian f luids .  The similar solutions obtained represent, i n  a l l  
cases, generalizations of boundary layer flows of Newtonian f lu ids .  The 
solutions are  discussed with respect t o  application t o  physical flows. 
of the more familiar flows represented are: 
a wedge, and a stagnation region; steady flow i n  a convergent or  divergent 
channel; and impulsively s ta r ted  flow over an in f in i t e  f l a t  p l a t e  and a 
aemi-infinite f la t  p la te .  

Some 
steady flow over a flat plate ,  

INTRODUCTION 

A large portion of boundary layer theory fo r  Newtonian f lu ids  is based 

These are 
on exact solutions which are characterized by affine ( l inear ly  transformed i n  
terms of the normal coordinate) boundary layer  veloci ty  prof i les .  
generally cal led similar solutions. 
depends on whether they represent or  approximate physical bcdy shapes and 
flows. Although most of these solutions were obtained by a d i r ec t  technique 
f o r  a par t icu lar  s i tuat ion,  it seems worthwhile t o  mathematically es tab l i sh  
the f i n i t e  number of conditions which w i l l  enable s i m i l a r  solutions t o  be ob- 
tained. After t h i s  has been done, the conditions required t o  produce similar 
solutions can be investigated with respect t o  t h e i r  approximation of physical 
flows and body shapes, and numerical solutions can be obtained f o r  those cases 
of physical in te res t .  These conditions fo r  two-dimensional, laminar, boundary 
layer flows of Newtonian f lu ids  have been recently investigated by Fenter 
(reference 1). 
establishing and investigating a l l  possible conditions for  similar solutions 
fo r  a usef'ul c lass  of non-Newtonian f lu ids .  

The prac t ica l  value of such solutions 

It i s  the purpose of t h i s  paper t o  apply t h i s  technique t o  

The technique is  t h a t  of t rea t ing  what Fenter c a l l s  the inverse problem; 
tha t  is, manipulating the general boundary layer equations t o  f ind the con- 
di t ions under which mathematical s imi la r i ty  ex is t s .  The existence of simi- 
l a r i t y ,  defined as the existence of a f f ine  veloci ty  prof i les ,  implies t ha t  



the  f lu id  veloci ty  and the spa t i a l  and temporal coordinates can be transformed 
so t h a t  the problem i s  reduced t o  one involving a single independent variable. 
The p a r t i a l  d i f f e r e n t i a l  equation f o r  the stream function then reduces t o  an 
ordinary d i f f e r e n t i a l  equation which can be solved readily.  An his tor ica l  
example of a treatment of the inverse problem i s  tha t  by Falkner and &an 
(reference 2)  where a family of steady flow conditions producing s imilar i ty  
was found. This investigation can be contirasted with two examples of the 
d i r ec t  approach: the Blasius solution f o r  the steady boundary flow on 
a f la t  p l a t e  (reference 3) (the Blasius solution i s  a l so  a special  case of 
t he  Falkner-Skan family of solutions),  and (2) the c l a s s i ca l  Rayleigh problem 
f o r  unsteady boundary layer  flow on an i n f i n i t e  flat p la te  s ta r ted  impulsively 
f r o m  rest (reference 4). 

(1) 

a constant of proportionali ty (defined by equation 4)  

f transformed stream function 

g x-dependent fac tor  i n  inviscid veloci ty  (defined by equation 12)  

I, 12, I f ivar ian ts  of 2 3 
L charac te r i s t ic  body length 

n non-Newtonian flow index (defined by equation 4) 

P isotropic  s t a t i c  pressure 

U l oca l  veloci ty  i n  the x-direction 

U veloci ty  at the edge of the boundary layer  

reference veloci ty  

t-dependent fac tor  i n  inviscid veloci ty  (defined by equation 12) 

uO 

U I  

V loca l  velocity i n  the y-direction 

X coordinate along the surface 

Y coordinate normal t o  the surface 

t t i m e  
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A 

7 sheax stress 

A rate of deformation tensor 

CI 

pe 

P density 

$ stream function 

7 

t 

* A 

viscosi ty  (defined by equation 1) 

ef fec t ive  viscosi ty  (defined by equation 2)  

s imi la r i ty  variable (defined by equation 15)  

function of x and t (defined by equation 15) 

FLUID MODEL 

In order t o  describe any f lu id ,  it must be possible t o  write i ts  stress 
For Newtonian f luids ,  t h i s  i s  tensor, f7, as a function of known variables'. 

eas i ly  done: 
A - 
A 

(1) T = C i f i ,  
A 

where a i s  the "rate  of deformation tensor" with Cartesian components 

and p i s  the coeff ic ient  of viscosity.  

The coefficlent pf viscosi ty  depends on the loca l  temperature and pressure 
but not on "7 or  A. 

The formulation of 3 f o r  non-Newtonian f lu ids  is, i n  general, a complex 
problem and awaits a well-developed theore t ica l  basis. The description of 
non-Newtonian f lu ids  i s  a l so  hampered by the lack of experimental techniques 
t o  evaluate various ana ly t ica l  models. Two examples of general f l u id  models 
which are based on theore t ica l  considerations but lack suf f ic ien t  experimental 
information t o  relate t h e m  t o  r e a l  f l u ids  are: 
suggested by Oldroyd (reference 5 )  f o r  non-Newtonian f lu ids  which exhibit  
e l a s t i c i ty ,  and (2) a m o d e l  f o r  non-Newtonian f lu ids  tha t  do not exhibit elas- 
t i c i t y  whichfeatures two sca la r  functions of 8 - the e f fec t ive  viscosi ty  and 
the "cross viscosity" (references 6, 7). 

(1) a three-constant model 

A discussion of the notation and operations used for second-order tensors 
is given i n  reference 8, pp. 726-731. 
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Lacking a usable m o d e l  based on theore t ica l  considerations, it is neces- 
sary t o  formulate phenomenological models which can be used i n  the  equations 
of motion. These models must, however, obey the laws-of tensor transformation. 
Keeping t h i s  i n  mind, it i s  possible t o  r e l a t e  and E by means of an effec- 
t i v e  viscosi ty  (reference 8), f o r  f lu ids  which a re  purely viscous (no elas-  
t i c i t y  or  anisotropic normal s t resses) ,  by 

I 

where we, a scalar ,  i s  a function of 'n as w e l l  as a function of temppature 
and pressure. 
depend only on the  invariants of &, which are, 

In order f o r p e  t o  Qe a sca la r  function of the  tensor it must 

I, = xi Aii 

I = C C A. A.. 
2 i j ij JL 

I 3 = .Xi C j  Ck Eijk Ali A2j A3k. 

I 
ihent ical ly  zero f o r  a two-dimensional flow. Therefore, f o r  two dimeXsiona1 
flow of an incompressible non-Newtonian f l u i d  characterized by equation (2), 
the s t r e s s  tensor i s  given by 

can be shown t o  be equal t o  zero f o r  a.n hcompressible f lu id  and I i s  

A t  t h i s  point several  choices of empirical re la t ions  f o r  I 
Due t o  i t s  convenient form and the f a c t  that it represents a l d g e  number of 
f lu ids  very well, the Ostwald-de Waele (power-law) model i s  chosen: 

are  available.  

where h:X denotes the scalar  product of two tensors.  
bined with equation (3) t o  give an expression f o r  the  shear stress t o  be con- 
sidered i n  the  boundary layer  equations: 

Equation (4) can be com- 

where T~ i s  the shear stress i n  the x-direction due t o  a veloci ty  gradient 
i n  the y-direction. If, i n  addition, the veloci ty  gradient i s  always posit ive,  
as fo r  boundary layer  flows, equation (5)  can be rewri t ten as 

7 = 
yx 



I 

For values of n l e s s  than one, the flow can be described as shear-thinning; 
and f o r  n greater than one, the flow i s  shear-thickening. 
of n are a l so  known, i n  a less physically descriptive sense, as pseudoplastic 
and d i la tan t ,  respectively. 
f l u id  with a = p. 

The ranges of values 

For n = 1 the  expression describes a Newtonian 

Use of the  power-law re la t ion  given by equation (6) has become well ac- 
cepted as descriptive of many r e a l  f lu ids .  
9 )  and Acrivos (reference 10) have used the power-law re la t ion  t o  develop simi- 
lar solutions f o r  steady, two dimensional boundary layer flows which w i l l  be 
shown t o  be special  cases of the  general analyses t o  follow (see Solutions #1, 

In par t icular ,  Schowalter (reference 

2, and 3 ) .  

ANALYSIS 

As mentioned above, the procedure will be t o  normalize the f lu id  velocity 
and the temporal and s p a t i a l  coordinates and, using the c lass ica l  boundary 
layer equations, t o  write the p a r t i a l  d i f f e ren t i a l  equation fo r  the stream 
function. 
variable which w i l l  allow the  transformation of the p a r t i a l  d i f f e ren t i a l  
equation f o r  the stream function i n t o  an ordinary d i f f e ren t i a l  equation i n  
terms of a new stream function and the  single variable. Once t h i s  equation 
and the appropriate boundary conditions are  written, and the significance of 
the individual terms noted, it w i l l  be possible t o  systematically consider the 
various conditions which must be sa t i s f i ed  t o  obtain similar solutions. 

The problem then wi l l  be t h a t  of determining the form of a single 

The system of equations considered a re  those credited t o  Prandtl and must 
therefore be accompanied by h i s  postulation of a t h i n  boundary layer. For an 
incompressible, laminar, two-dimensional, thin boundary layer - without regard 
t o  the form of the momentum f lux  term - the  continuity and momentum equations 
are  

where x and y 
respectively . are coordinates along and normal t o  the surface 

These coordinates are  curvil inear,  i n  general, 
of the body, 
but owing t o  

the th in  boundary layer assumption the equations can be writ ten i n  t h e i r  rec- 
t i l i n e a r  forms. The ve loc i t ies  along and normal t o  the surface of the body 
are given by u and v, respectively. 
momentum flux, the  basic  equations are writ ten wholly i n  terms of gradients 
t o  give 

By subst i tut ing equation (6) fo r  the 

5 



A t  th i s  point it i s  convenient t o  make the variables non-dimensional w i t h  
the relations,  

U - = -  V - , z -  tu0 - u- - -  
x = L ,  y = L ,  t = L ,  u = u o ,  v = U o ,  u uo ’ 

where L is a charac te r i s t ic  length of the body and Uo i s  a constant reference 
velocity. 
venient by applying the unsteady Bernoulli equation t o  the outer edge of the 
boundary layer, as w e l l  as applying the  momentum equation i n  the y-direction, 

The momentum equation f o r  the x-direction a l so  can be made more con- 

aU aU L g  = --& ‘ U Z  , 
P 

where U is the veloci ty  a t  the outer edge of the boundary layer. 
tut ions give 

The subst i -  

where 
2-n n 

P uo L 
%I= a 

The dimensionless stream function, which satisfies the  continuity equation, 
now can be defined as 

where i s  re la ted  t o  the ordinary stream function by 

I# I # = -  - 
U0L ’ 

6 
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Equation ( 9 )  then becomes 

where each subscript indicates p a r t i a l  differentat ion with respect t o  t h a t  
variable. 

Three boundaxy conditions c o m n  t o  a l l  boundary layer problems can be 
writ ten immediately, 

Other boundaxy conditions needed t o  obtain a solution f o r  a par t icu lar  physical 
s i tua t ion  w i l l  be determined by the  physical s i tua t ion  and w i l l  be discussed 
individually later. 

Thus, the f i rs t  s tep i n  the  plan t o  obtain a l l  possible solutions has been 
accomplished. 
ary conditions which define the  problem in  i t s  most general form. 

Equations (10) and (11) give the d i f f e ren t i a l  equ&tion and bound- 

The analysis can be simplified 
layer can be considered t o  have the 

- u (2, € )  = 

if the velocity at  the edge of the  boundary 
form, 

which is val id  if the inviscid veloci ty  f i e l d  i s  i r ro ta t iona l .  I r ro ta t iona l i ty  
is  proved if at some time each element of f l u i d  i s  moving i n  an i r ro t a t iona l  
manner. Since only the case of a spa t i a l ly  uniform veloci ty  f i e l d  at  large 
distances from the body w i l l  be considered, the en t i r e  inviscid flow f i e l d  may 
be considered i r ro ta t iona l .  

The next s tep i s  t o  transform the stream function, q, which is  a function 
of 2, 7 and E, i n to  a function of a single variable,q , which i s  in  turn a 
f’unction of 2, .y and f .  
condition tha t  q be l inear ly  dependent 
s imilar i ty .  f i s  defined such t h a t  

Determination of the form of rj , consistent with the 
on 7, will es tab l i sh  the  conditions f o r  

where the prime indicates different ia t ion with respect t o  q. 
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The boundary conditions given by equations (11) then become 

f = f '  = 0 at f = 0 

f ' -  1 as y - 0. - 

In order t o  develop the correct form of q, the r e l a t ion  between the old 
and new stream function and q must be found. It can be seen tha t  

(13 1 
- aij = Df' = u, ( f )  g (S) f ' .  

3 
If, as was  s ta ted  previously, only forms of q which a re  l inear ly  dependent on 
f are considered, then 

Equation (13) can be integrated t o  give 

number; and (3) 
proportional t o  

introduction of 
is given by, 

The requirements placed on q are: (1) it must be proportional t o  y in  
order t o  satisfy the first boundary condition given by equation (11); (2) it 
must involve Ron such t h a t  equation (10) becomes independent of the Reynolds 

It i s  found that making q 
1 eliminates the  Reynolds number dependency, and the 

it must be a f'unction of % and f .  

(R%)"+l 
a general function, k(S, f ) ,  will be useful. Thus the  form of 

1 

The combination of equations (lo), (12), (14) and (15) yields  first f o r  
each term i n  equation (10): 

r 1 1 

8 



where primes indicate d i f fe ren t ia t ion  with respect t o  the applicable variable; 
which i n  turn  yields:  

A s  f o r  Newtonian f luids ,  each term can be ident i f ied  according t o  i ts  

(1) viscous shear s t r e s s  term 
(2) convective terms 
( 3 )  pressure gradient due t o  body shape 
(4) pressure gradient due t o  acceleration of the free-stream 
(5) i n e r t i a  term due t o  acceleration of the boundazy layer f lu id  

Equation (16) indicates t h a t  s imi la r i ty  ex i s t s  if, and only i f ,  the 

physical significance by the number under it: 

bracketed fac tors  a re  e i the r  constants or  functions of q. 
the brackets do not contain 
be constants. 

Since the terms i n  
they cannot be functions of q and must therefore 

The complete ordinary d i f f e ren t i a l  boundary layer equation and accompany- 
ing general boundary conditions can be written: 

9 



f"'  + A f ( f r t ) 2 ' n  - B ( f l f l - l ) ( f t  = C(ft-l)(f11)'-n-Dq(fll)2-n 

f = f ' = O  when q = 0 (17) 

f '  = 1 as 11-- , 
where A, B, C, and D are constants. The problem i s  now reduced t o  determining 
the conditions f o r  which cer ta in  body shapes, g, and veloci ty  t i m e  h i s tor ies ,  
Uo, satisf'y the  following equations : 

The four relationships expressed i n  equation (18) are suf f ic ien t  t o  deter-  
mine E(?if), since Ba and g represent only two unknowns. 
1, the three boundary conditions listed with equation (17) are suf f ic ien t  t o  
determine the solution since the  equation is  a t h i r d  order ordinary differen- 
t ia l  equation. 
required t o  solve the equation before it was transformed i n t o  s imi la r i ty  var i -  
ables. It can be seen from equation (18) that the two addi t ional  boundary 
conditions are required by the  f i r s t -order  d i f f e ren t i a l s  with respect t o  2 and 5. 

As noted i n  reference 

On the  other hand, as many as f i v e  boundaxy conditions were 

Treatment of the problem has now progressed t o  the f i n a l  s t a t e  - that of 
systematically seeking the various solutions t o  equations (18) - the r e su l t s  
of which W i l l  provide the conditions and resu l t ing  equations which satisfy the 
s imilasi ty  assumptions. The investigation will be divided in to  two categories: 
steady and unsteady flow. 

A. STEADY FLOW: 

For steady flow it can be seen that 

C = D = O  

since 

10 



and 

% = 0, or g = e(%) only. 

"he conditions f o r  s imi la r i ty  are then given by: 

2 -n 
1 -n 

A = -  en+ g n 

1 -n B = g  

Combining the two equations i n  (19) gives 

1 d(gn+l g2-n) (a-1) [ ( g , ) A  - B 1 = - n d f  

Integration yields  

En+% n 2-n 
= (2 n - l ) [ ( z l )  A-B] % + C, , 

where C, i s  a constant of integration. 

la t ion  between g and % i s  found t o  be, f o r  a l l  steady flows, 
Upon combining equation (20) with the  second of equations (19) the re- 

B 
E ' =  - (m-l)[-?> 2n- 1 A-B1 % + C1 

It is seen solutions t o  equation (20),  de- 
pending on whether f 0. The two  cases w i l l  be 

investigated separately. 

1. (e) A-B # 0 

For t h i s  case, equation (a) may be written, 

B d s  
dg - =  

(2n-1)[(g1) A-B] 5 + C, ' 

11 
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which yields,  upon integration, 
B 

which, when combined w i t h  equation (20), 

- 
2-n 
n+l 
- E . =  

c 2  

gives an 

2 + c, 

expression fo r  5 :  

A- B 

From equation (22) it i s  seen t h a t  t h i s  solution has an inviscid velocity 
d is t r ibu t ion  of the form: 

where the appropriate constants are  

B 

- 
a2 - (2n-l)[(= ) A-B] 

2n-1 

- B m =  
(2n-l)[(=) 2n-1 A-B] ' 

It i s  seen f r o m  equations(25) tha t  0 and a2 can be given any desired 
values due t o  the presence of C, and C2. 'The last  of equations (25) a lso  
demonstrates t h a t  a value fo r  A can be assigned a rb i t r a r i l y ,  since B can be 
varied t o  give a desired value of m. 

12 



It is  convenient t o  l e t  A = 1 i n  th i s  case. Equations (25) are then 
solved f o r  B, C,, and C i n  terms of the constants i n  the velocity dis t r ibut ion:  

2 

a2 (n+l> 
c, = l+m(2n-1) 

Substi tution of these expressions i n t o  equations ( l5) ,  (17), (22) and 
(23) allows the first d i f f e ren t i a l  equation and boundary conditions, together 
w i t h  the appropriate veloci ty  d is t r ibu t ion  and s imi la r i ty  transformation, t o  
be written. One r e s t r i c t ion  is  made at t h i s  point; t h a t  is, the singular 
point 

is  excluded and w i l l  be considered as a separate case. 
inviscid velocity dis t r ibut ion,  

Therefore, for the 

m - u = a, (2 + a,) (m f - &). 

where 

(26 1 
#1 

Solution 



I I I IIIIII IIIII I l l  I1 I 

These equations can be solved numerically to provide similar solutions for this 
family of flows. 

For the case of m = -1 
2n-1 

, it can be seen from the third of equations 
(25)  that 

which implies that A = 0 and, therefore, that B is arbitrary. 
(23 )  gives an expression for e, after substitution and manipulation: 

Then equation 

In order to avoid problems with imaginary numbers, B is chosen to be 
2-n 

- ., 
B =  A 

I., I 2-n 
The velocity distribution for this case is 

where 

- u =  

B =  

c =  1 

c =  2 

2n- 1 (Z + "2) 

2 -n 
- 
la1 I 2-n 
2 -n 

. (2nd) 5 .2 

I., I 2-n 
1 - 2 -n 

I 2n-1 (211-1) 
2 -n 

14 



Substi tuting i n  equations (15) and (17) gives f o r  flows of the  following 
inviscid velocity distribution: 

2-n 
f " '  + "1 (f ' f ' - l)(f")l-n = o  

I., I 2-n 

f = f '  = 0 at  q = O  (27 1 
i$+ 

Solution 

1 where 
n+l 

I a J 2 - "  1 n RO 

n(2n-1)(x+cr2) 2n- 1 

2. (eJ A-B = 0, A = ( 
This condition reduces equation (21) t o  

which can be integrated t o  give 
B -  

1 
X - 

C 

g = C j e  

Combining equations (20) and (28) gives the  expression f o r  5 t o  be 

1 - 
n+ 1 

5 - 
- (2) 

3 

-(S)( %)z 
e 



Equat ion (28) shows tha t  t h i s  s o l u t i o n  i s  v a l i d  f o r  v e l o c i t y  d i s t r i b u t i o n s  of  
the  fo l lowing  type: 

where 

B c, = - 

c = al. 

Equat ion (29)  can then be w r i t t e n  8 s  

n+ 1 
- 

5 =  e 

If a1 is restricted t o  values greater t h a n  z e r o  and B i s  chosen t o  be 

Thus f o r  i n v i s c i d  
a2/la21 (since B is  arbitrary f o r  the reason  p r e v i o u s l y  stated) no  g e n e r a l i t y  
i s l o s t a n d  the problem of  imaginary numbers is  avoided. 
v e l o c i t y  d i s t r i b u t i o n s  given by: 

- a z  U = a e 2 ,  
1 

f = f ' = O  at q = O  

f'- 1 as q-a, 

where 

] n+l . 
2-n (2-n)az ' 
n 

e 
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B. UNSTEADYFUW 

It i s  convenient t o  divide the investigation of s imi la r i ty  f o r  time- 
dependent flows in to  two cases; flows with streamwise veloci ty  gradients, and 
flows without streamwise veloci ty  gradients. 

1. Unsteady Flow with Streamwise Velocity Gradients 

It can be seen t h a t  t h i s  choice leads t o  the  conclusion t h a t  

Upon combining the  second and t h i r d  of equations (18), 
a l l  of the constants defined by equations (16) axe non-zero, since g' as w e l l  
as 65 , i s  non-zero. 
it i s  seen tha t ,  

where C is a constant which w i l l  be evaluated later. 
term of equation (32) gives, 

Integration of the g(ID 
4 

- 1 
U" = 7 (33 ) c5 - c 4 t  

and,similarly, the g term of equation (32) can be integrated, with the resu l t ,  

Combining equation (34) with the  th i rd  of equations (18) gives the following 
expression f o r  6: 

Equations (33) and (34) can be combined t o  give the inviscid 
veloci ty  dis t r ibut ions f o r  which t h i s  solutions ex i s t s  : 
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where 

a1 = C6 

C4B a2 = - C 

a = c5  

"4 = c4 . 
3 

If the above re la t ions  are subst i tuted i n  equations (18) the 
following re la t ions  f o r  A, C, and D i n  terms of B a re  found t o  be: 

c = -  B 
a2 

D = (ZI 
a ' B .  
2 

n-2 

B i s  again a rb i t ra ry  and i s  chosen equal t o  1. Thus f o r  the 
following inviscid flow: 

where 

18 

(36) 

* Solution 



2. Unsteady Flow without streamwise veloci ty  gradients (flat plates  
at zero angle of a t t ack )  

The case of no streamwise velocity gradients gives g = 1 and 
g' = 0,which reduces equations (18) t o  the following: 

B = O  

It i s  possible t o  consider the t i m e  dependency of the boundary layer both 
with and without a time dependent inviscid flow. This is done by considering 
two cases; t h a t  of = and -' u, # 0' 

- 8  
a. U, = 0 

For t h i s  case, 
sions f o r  A and D with respect t o  

n+l 

n+i 

n ( n + l ) e  

Equations (37) combine t o  give: 

- 
U = 1 and C = 0. Integrating the expres- 
%"and f ,  respectively, 

A + T(E) ( 3 7 )  - - 

- - D E + X(%). 

or  

and 

A 2 - X(2) = - T(E) = c7 , 
T(E) = DZ - C 

7 

7 .  
x ( Z )  = A? - c 



Substi tution of these results i n t o  either of equations (37) gives an expression 
f o r  6: 

1 

n (n+l) (A Z + - c7)] = . 
Two of the  constants i n  equation (38) w i l l  be required t o  sa t i s fy  the two pos- 
s ib l e  additional boundaz'y conditions; therefore, one w i l l  be arbi t rary.  A 
value of D = 2 w i l l  be assigned. It should be noted here that  the special  
case of D = 0 reduces t o  a special  case of Solution #l. Equation (38) can 
then be written: 

where 

- c7 a2 - - -  2 and 
A 

(rl = p 
Therefore, for inviscid flow f i e l d s  of the type: 

- u = 1, 

f'-1 as 7 - a ,  

where 1 

*On 
- 

1 n+l 

(40 1 
#5 

Solution 

Combining the expressions f o r  C and D yields 
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I 

D + (1-n) C = 1 a(.,'-" sl+n) 
J 

n (1  + n)  

and a f t e r  integration gives 

df 

If equation (41) i s  substi tuted in to  the expression f o r  CJan ordinary differen- 
t ia l  equation f o r  the  velocity d is t r ibu t ion  resul ts :  

C 

which can be integrated for each of two cases; that of D + (1-n) C = 0 and 
D + (1-n) c + 0. D + (1-n) c + 0, 

and i f  D = 2 is  chosen a rb i t r a r i l y ,  the veloci ty  d is t r ibu t ion  is given i n  
general by: 

where 

- '8 

2 + (1-n)c 012 - 

n 
L. m =  

(1+n)[2+ ( 1 - n ) ~ ]  

It can be seen that A = 0 since the  expression f o r  e i s  independent of %, and 
A i s  proportional t o  Ez. 
of the type : 

This solution c m  be written, f o r  inviscid flow f i e l d s  



(f '-l)(f' ')l-n + 2 (f 1 q2-n = o  (44 ) f' 1 1 - 2m(n+l) 
1-m(  l+n ) ( 1-n ) Solution 

f'- 1 &S v-w , 
1 where - 

Ron 1 n+l . l-m(l+n)(l-n) a1 

a(n+l) (E + a2) 1 1-m (1-n) 

If D + (1-n) C = 0, equation (42) can be solved to give 
C - 

- U, = C,, e 'm 
or , 

- a 5  U = a l e  2 , 

where 

a = c,, 1 

If C is chosen to be a2/ Ia,I , the expression for g is written, 

, 

which gives, for the inviscid flow field, 

22 
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where 

f " 1  "2 ( f '  - 1) ( p 1 ) l - n  = o  - I q  

a t  9 = O  

as q - a ,  

(46 1 
#7 

Solution 

DISCUSSION 

A discussion of each of the seven sets of conditions which produce similar 
boundary layer solutions i s  now possible. 
re la t ing  the requirements f o r  s imi la r i ty  t o  physically real flows. In  some of 
the cases the re la t ion  i s  exact; i n  others the re la t ion  is  only approximate and 
the usefulness of application t o  real flow cases will depend on the cleverness 
of the user. 

The primary motivation i s  t h a t  of 

Each solution is, of course, a generalization of the  Newtonian case. It 
i s  interest ing t o  note t h a t  the same number of s i m i l a r  solutions ex i s t  f o r  
power-law f lu ids  as f o r  Newtonian f lu ids .  
solution may, however, show re s t r i c t ions  on the range of values of n f o r  which 
similar solutions ex i s t  - a d i f fe ren t  range than tha t  given by consideration of 
the boundary layer approximations. 

Some unusual l imitat ions of the boundary-layer theory should be noted 

Detailed investigation of each 

at  t h i s  point. The form of Ron, 

p $"Ln - 9 - 
%l K 

states tha t ,  f o r  values of n < 2, Ron can be made suf f ic ien t ly  large by in-  
creasing U. 
suf f ic ien t ly  large.  
power-law formulation i s  not val id  f o r  most f l u ids  at  low values of du/dy. 
Although it appears t ha t  there  i s  some range of Uo where the  boundary layer 
approximations a re  val id  f o r  n > 2, the l imitat ions probably r e s t r i c t  use of 
thetheoly t o  values of n < 2. 

If, however, n > 2, there  i s  an upper l i m i t  on Uo f o r  making Ron 
There is also a lower l i m i t  on Uo f o r  n > 0 because the 
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As was noted ea r l i e r ,  f i v e  boundary conditions are required t o  define a 
similar solution, i n  general. 
as charac te r i s t ic  of a l l  boundary layer  problems. 
di t ions,  if required fo r  a par t icu lar  solution, are found as constants of inte-  
gration in  the expression f o r  5 .  
re la ted  intimately t o  the physical system considered and will be discussed as 
such. 

Three boundary conditions were provided i n i t i a l l y ,  
The remaining boundary con- 

These extra boundary conditions are, therefore, 

Numerical analysis  of each solution w i l l  provide unique values of f '  f o r  
values of q equal t o  and greater than zero, f o r  selected values of n. 
makes possible the def in i t ion  of a boundary layer  thickness, 6, which is  de- 
fined as the value of ? when f '  has reached an a rb i t r a ry  percentage of unity. 
For example, if the value of f '  is chosen t o  be 0.99, then, 

This 

f '  (l+J = 0.99 

where q is the  value of 7 at y = 6 and f' = 0.99. 6 can then be writ ten as, 6 

It should be noted i n  passing tha t  t h i s  expression shows the boundary layer 
thickness t o  be inversely proportional t o  
familiar f o r  the special  case of Newtonian flow. 

2 rather than the  more 
1 (Ron) n+1 

Solution #l 

Equation (26) represents a generalization of a family of solutions f o r  
Newtonian f lu ids  first deduced by V. M. Falkner and S. W. Skan (reference 2)  
and l a t e r  investigated i n  d e t a i l  by D. R. Hartree (reference 11). 
types of inviscid veloci ty  dis t r ibut ions probably have the most useful physical 
applications of a l l  of the similar solutions f o r  Newtonian f lu ids .  
application t o  physical  flows is found f o r  non-Newtonian f lu ids .  
mentioned earlier, Solution #I, as w e l l  as Solutions 
generalization of the  steady flow solutions stated recently by Showalter f o r  
power-law f luids .  

The several  

The same 
As was 

and #3, represent a 

Sincea2 only serves t o  t rans la te  2 from the origin,  a2 can be set equal 

i s  
D i s -  

t o  zero without a loss of generality. This a l so  s a t i s f i e s  the i n i t i a l  bound- 
ary condition: 6 = 0 when 2 = 0 and U = 0. 
a generalization, f o r  power-law f luids ,  of the Fahner-Skan wedge flows. 
cussion of the various inviscid flow fields can be f a c i l i t a t e d  by rewriting 
the expression f o r  and the d i f f e ren t i a l  equation, together with expressions 
f o r  q and 6 : 

For a > 0 the equation f o r  

m - u = a1 (3. 
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(f 'f l-l)(f ql-n = o  - L+m(2n-l) 
f ' I  I + f ( f 1 y - n  m(n+l) 

The general case of 0 < m < 1 physically represents the potent ia l  flow in  the 
neighborhood of the  stagnation point of a wedge. Potent ia l  theory (reference 
12)  gives the  re la t ion  between the f u l l  wedge angle m, and the  power of the 
velocity dis t r ibut ion,  m: 

2 m  p = -  
l+m 

F r o m  the  previously given def in i t ion  of the constant B: 

the  re la t ion  between 8 and B can be found i n  terms of m and n; 

2B 
p = (n+l.) + B(2-2n) 

This i s  seen t o  reduce t o  ,? = B f o r  Newtonian f luids .  

The flow over a f la t  p l a t e  at  zero incidence i s  obtained if m = 0, where 
B = 0 and u = a1 . 
f o r  power-law f lu ids  by Acrivos et .  d. (reference 10). It is interest ing 1 
t o  note t h a t  $he boundary layer  thickness grows i n  d i r ec t  proportion t o  (g)n+l 
compared t o  XZ f o r  Newtonian f lu ids .  
6 would grow much f a s t e r  with 2 than it would f o r  Newtonian f luids ,  other con- 
d i t  ions being equal. 

This problem has recently been investigated numerically 

Thus, f o r  pseudoplastic f lu ids  (n < 1) 

25 



For m = 1 it is seen tha t  p = 1 and = al 2 which is  the  physical case of 
stagnation flow fo r  a l l  values of n. 
solution i s  the var ia t ion of 6, which is d i r ec t ly  proportional t o  

Again using the example of pseudoplastic f lu ids ,  6 decreases with increasing 2 
f o r  O<nc 1. For n>1 ,  6 increases with increasing 2. 6 i s  e i the r  i n f i n i t e  

A signif icant  charac te r i s t ic  of tQis n- 
( 5 )  n+l 

(or f i n i t e  for  a2 # 0) o r  zero at 2 = 0, depending on whether 0 < n < 1 
n > 1, respectively. 
Newtonian f lu ids .  

or  
Comparatively, the %- dependence of 6 disappears f o r  

The case of m = 1 and a2 >o should be mentioned. This results i n  an in-  
viscid velocity d is t r ibu t ion  of the type: 

- 
U = a - a 2  

1 2 

where a l>  a x and a > 0. 
channel followed by a divergent channel.. 

This corresponds physically t o  flow in  a s t ra ight  
2 2 

Solution #2 
c 

The solution given by equation (27) i s  a l so  a generalization of one of 
Again a2 can be s e t  equal t o  zero without a loss o f  the Falkner-Skan cases. 

generali ty since the term amounts t o  a t rans la t ion  of the  2 coordinate: 
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For Newtonian f luids ,  the inviscid velocity distribution-is t ha t  of e i ther  a 
source o r  a sink, depending on the sign of 2 
ment can be made re la t ing  the inviscid velocity d is t r ibu t ions  f o r  Newtonian 
f lu ids  t o  potent ia l  theory. 
mates flow in  diverging or  converging curved channels. The special  case of 
Newtonian f lu ids  approximates a diverging o r  converging channel with s t ra ight  
walls. - This can be only an approximation because the solution requires t h a t  
U - - 0  and 6-c 
i n  a r e a l  channel where the inviscid velocity i s  f i n i t e  a t  2 = 0. When 
applied t o  flow i n  channels the solution becomes more accurate as 2 increases. 

and hence U. No general s ta te -  1 

Practically,  the general expression f o r  a approxi- 

(for n < 5 )  as 2 4 0  and these conditions m e  not s a t i s f i ed  

Solution #3 

Equations (31) describe the  generalization of a seldom-discussed Falkner- 
Skan solution. 
the 2 origin, therefore no generali ty i s  sacr i f iced if al i s  s e t  equal t o  
unity and: 

It can be seen t h a t  values of a1 other than unity t rans la te  

a22 - 
U = e  

r n 

Any application of t h i s  solution t o  a physical f l o w  must sa t i s fy  the i n i t i a l  
condition : 

a t  % = 0, where 
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This can be comparred with the  case of stagnation flow f o r  Solution #1, i n  
which: 

1 

U L  n 

where 

011 = (E) - x =  0 

For Newtonian f lu ids ,  where both cases lack an 2-dependence, there  exists the 
poss ib i l i ty  that the  two solutions can be matched at some point downstream of 
the stagnation point.  
power-l&w f luids;  however, m t h e r  investigation and numerical analysis i s  re-  
quired t o  determine how well t he  solution represents a physical s i tuat ion.  
Certainly such a match of solutions would not produce an exact representation 
at  the  origin,  but may become suf f ic ien t ly  accurate as 5 increases from the 
origin.  

This may a l so  be true f o r  t he  more general case of 

Solution #4 

The solution f o r  unsteady flow given by equations (36) can be rewrit ten 
by again letting al, the  t rans la t ion  of 2, go t o  zero w i t h  no loss of generality: 
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These equations, f o r  Newtonian f luids ,  were investigated and reported recently 
by Yang (reference 12). 

It should be noted t h a t  6 i s  a function of both 3 and 2, i n  general; but 
it is  a function of 5 only f o r  Newtonian f lu ids .  As f o r  the steady flow stag- 
nation solution, 6 decreases f o r  increasing ? f o r  mu, and increases f o r  in- 
creasing 2 f o r  n>l. 

The inviscid velocity d is t r ibu t ion  i s  t h a t  of a stagnation flow with a 
hyperbolic history.  
shown by f i r s t  noting t h a t  t h i s  type of flow w i l l  r e su l t  when the forces act-  
ing on the body are  proportional t o  the square of the velocity: 

The significance of t h i s  type of unsteady flow can be 

It can be seen t h a t  t h i s  type of velocity his tory will r e su l t  when a l l  the 
forces acting on the  body are  forces which obey the simple quadratic res i s -  
tance l a w .  Specifically,  f o r  the case of non-lif t ing bodies in  which the 
drag force predominates the acceleration i s  approximately as follows: 

Solution #4 w i l l  very closely approximate t h i s  physical case i f  the drag coef- 
f i c i en t  and the density a re  constant o r  slowly varying. 

Solution #5 
Equations (40) give the  general solution f o r  a f la t  p la te  at zero incidence 

moving with a constant veloci ty  in  i ts  own plane. 
with i n e r t i a  due t o  the  accelerating boundary layer f l u i d  i s  retained, the physi- 
c a l  s i tua t ion  must be tha t  of a t ransient  boundary layer t ry ing  t o  adjust  t o  new 
steady state conditions. 
satisfied by se t t i ng  012 equal t o  zero. 
ably by eliminating the  ? dependence of 7 ( l e t t i n g  ~1 = 0). 
nates the convective term, the  solution corresponds physically t o  the case of 
an impulsively moved i n f i n i t e  f la t  p l a t e  o r  a f i n i t e  p l a t e  at the f irst  instant  

Since the term associated 

The init ial  condition of 6 = 0 f o r  ? = = 0 can be 
The problem can be simplified consider- 

Since t h i s  elimi- 



I I l l  II II I I1 I I 

of motion and is, f o r  Newtonian f luids ,  the c l a s s i ca l  Rayleigh problem. This 
can be written: 

The more general case f o r  a1 # 0 re ta ins  the convective term and therefore 
corresponds t o  a f i n i t e  f lat  plate,with i t s  leading edge at  2 = 0,impulsively 
put in to  motion i n  i t s  own plane. This s i tua t ion  i s  given by: 

f" '  + 2(-J ,f(f")- + 2 q (f")2-n = 0 

1 Ron 

2n(n+1)(aljt + 5) 
, = ? [  

1 

I" ' 

6 =  'I6 pn+yli + 'E) 

n 

Solution #6 

Equations (44) describe an inviscid flow with a power-law veloci ty  history.  
Since a2 again corresponds only t o  a displacement of a coordinate, in t h i s  case 
f, it can be s e t  equal t o  zero with no s ignif icant  loss  of generali ty:  
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Since no convection terms are  present, the  solution again applies t o  an 
i n f i n i t e  flat p l a t e  o r  a f i n i t e  p l a t e  at the  f irst  instant  of motion. 

The i n i t i a l  condition, 6 = 0 at 2 = 0 is  sa t i s f i ed  exsctly f o r  i n f i n i t e  

= 0, the case of the 
plates .  
t h a t  of the  special  case of Solution #5 where aland 012 
impulsively moved p la te  at  a constant velocity.  

It is  interest ing t o  note t h a t  for  m = 0, the  problem i s  ident ica l  t o  

Solution #7 

The solution described by equations (46) a l so  applies t o  an i n f i n i t e  

can be s e t  
f l a t  p l a t e  moving i n  i t s  own plane, since no convection terms are  present. The 
inviscid veloci ty  his tory i s  a simple exponential curve and (311 

equal t o  unity since it corresponds t o  a displacement of the time scale. The 
conditions of the solution can be rewritten: 

f '  I 1  a2 ( f I - l ) ( f * q l - n  = o  -m 

1 
J 

The boundary layer  thickness is  seen t o  be f i n i t e  a t  t = 0 f o r  a l l  values 
of n. 6 is seen t o  be constant f o r  Newtonian f lu ids .  



CONCLUSIONS 

The following conclusions have been made as a r e su l t  of investigating the  
two-dimensional, laminar, incompressible boundary layer  equation f o r  purely 
viscous, power-law non-Newtonian f luids:  

1. The solutions found f o r  steady and unsteady flows are  generalizations 
of the solutions found by Fenter f o r  Newtonian f lu ids .  The number of similar 
solutions is found t o  be the same as f o r  Newtonian f lu ids .  

2. With regard t o  the steady flow solutions found, a l l  are generalized 
versions of the Falkner-Skan flows f o r  Newtonian f lu ids .  
and #3 are generalized versions of s imilar  solutions f o r  power-law f lu ids  
investigated by Schowalter. 

Solutions #1, #2, 

3. Solution #4 i s  found t o  represent a stagnation flow with a family of 
flow h is tor ies .  The boundary layer thickness i s  seen t o  be a f’unction both of 
2 and f f o r  the general case, where 6 i s  a function of 5 only fo r  Newtonian 
f lu ids  . 

4. Solution #s represents the flow over a f la t  p l a t e  at zero incidence, 
moving a t  a constant velocity, i n  which the t rans ien t  boundary layer is  t rying 
t o  adjust  t o  new steady state conditions. The solution includes as special  
cases the flows over an i n f i n i t e  and semi-infinite flat p l a t e  impulsively put 
i n to  motion i n  t h e i r  own planes. 

5. Solution #% describes a flow with a power-law velocity his tory over an 
i n f i n i t e  flat plate .  

6. Solution #” represents flow over an i n f i n i t e  f la t  p la te  moving in  i ts  
own plane. The inviscid velocity his tory is  an exponential function. The 
boundary layer thickness i s  found t o  be a function of time fo r  the general case, 
where it i s  constant f o r  Newtonian f lu ids .  
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